NLP enables computers to communicate with people using everyday language. Large language models (LLMs), in particular, are key drivers of language-based interaction, potentially including extra data modalities such as structured data or images. Such systems also enable sophisticated tasks such as language translation, semantic understanding, text summarisation, and natural language dialogue. Applications of NLP include interactive speech-based applications, automated translators, digital personal assistants, and chatbot.
As we look to the future, our department at MBZUAI will continue to be a driving force in shaping the next generation of NLP technologies. Whether it’s in the realms of large language models, dialog systems, chatbots, Arabic NLP, machine translation, speech recognition, multimodality (language +speech/images/video), or understanding the subtleties of language, our department will be at the forefront of innovation.
Department Chair of Natural Language Processing, and Professor of Natural Language Processing
Read Bio
Devise cutting-edge NLP algorithms with applications to real-life.
Implement, evaluate, and benchmark existing state-of-the-art in NLP scholarly publications.
Identify open research problems, and the gaps in the existing body of knowledge, to formulate high impact research questions.
Independently develop innovative solutions, through extensive research and scholarship, to resolve unsolved research problems in high-impact real-life applications of NLP.
Invent innovative, sustainable, and entrepreneurial state of the art solutions to existing open research problems.
Pursue an NLP project either independently, or as part of a team in a collegial manner, with minimal supervision.
Initiate, manage, and complete research manuscripts that demonstrate expert self-evaluation and advanced skills in scientifically communicating highly complex ideas.
Initiate, manage and complete multiple project reports and critiques, on a variety of NLP problems.
The minimum degree requirements for the Doctor of Philosophy in Natural Language Processing is 60 credits, distributed as follows:
Number of Courses | Credit Hours | |
---|---|---|
Core | 4 | 16 |
Electives | 2 | 8 |
Internship | At least one internship of up to six weeks duration must be satisfactorily completed as a graduation requirement | 2 |
Advanced Research Methods | 1 | 2 |
Research Thesis | 1 | 32 |
The Doctor of Philosophy in Natural Language Processing is primarily a research-based degree. The purpose of coursework is to equip students with the right skillset, so they can successfully accomplish their research project (thesis). Students are required to takeNLP801, NLP802, NLP803, and NLP804 as mandatory courses. They can select two electives.
Course Title | Credit Hours | |
---|---|---|
NLP801 |
Deep Learning for Language Processing
This course focuses on recent advances in Natural Language Processing and on developing skills for performing research to advance the state of the art in Natural Language Processing. |
4 |
NLP802 |
Current Topics in Natural Language Processing
This course focuses on recent topics in Natural Language Processing and on developing skills for performing research to advance the state of the art in Natural Language Processing. |
4 |
NLP803 |
Advanced Speech Processing
This course focuses on developing knowledge about the state of the art in a wide range of Speech Processing tasks, and readiness for performing research to advance the state of the art in these topics. |
4 |
NLP804 |
Deep Learning for Natural Language Generation
The course introduces students to the emerging topic of natural language generation and prepares them to perform research to advance the state of the art in this research area. |
4 |
Students will select a minimum of two elective courses, with a total of 8 (or more) credit hours. Two must be selected from list based on interest, proposed research thesis, and career aspirations, in consultation with their supervisory panel. The elective courses available for the Doctor of Philosophy in Natural Language Processing are listed in the tables below:
Course Title | Credit Hours | |
---|---|---|
CV801 |
Advanced Computer Vision
This course provides a comprehensive introduction to Advanced computer vision techniques. The students will develop skills to critique the state-of-the-art computer vision research papers. The course aims at building foundation concepts for modern computer vision as well as developing expertise in several specialized areas of research in computer vision. The following topics will be covered in the course. (i) Deep learning for computer vision (ii) Recent developments in convolutional neural networks and transformers (iii) Advanced techniques in object detection and segmentation (iv) Advanced Vision applications such as medica image segmentation and Remote sensing change detection (v) Development of efficient computer vision architectures (vi) Human centric Vision and (vii) Introduction to Vision Language Models and Diffusion models. |
4 |
CV802 |
Advanced 3D Computer Vision
The course exercises an in-depth coverage of special topics in 3D computer vision. The students will be able to critique the state-of-the-art methods on multi-view stereo, 3D reconstruction, 3D shape analysis, 3D deep learning and synthesis, students will have to implement papers to accomplish the following goals: (1) reproduce results reported in the papers, and (2) improve the performance of published peer-reviewed works. This course assumes that the students are familiar with the basic concepts of Computer vision, linear algebra and numerical methods. |
4 |
CV803 |
Advanced Techniques in Visual Object Recognition and Detection
This course provides focused coverage of special topics on visual object recognition (image classification), detection and segmentation. The students will develop skills to critique the state-of-the-art works on visual object recognition, detection and segmentation. Moreover, students will be required to implement papers with the following aims: (1) reproduce results reported in the seminal research papers, and (2) improve the performance of the published works. This course assumes familiarity with fundamental concepts in computer vision and machine learning. |
4 |
CV804 |
Geometry Processing
This course introduces 3D geometry processing, an important field that intersects computer vision, computer graphics, and discrete geometry. This course will cover the mathematical foundations for studying 3D surfaces from a discrete differential geometric standpoint and present the full geometry processing pipeline: from 3D data capture, mesh smoothing, surface reconstruction, parameterization, registration, shape analysis (correspondence, symmetry, matching), data-driven synthesis, interactive manipulation, to 3D printing. This course will offer practical coding exercises to understand basic geometry processing algorithms and exciting project around data capture and geometry processing. |
4 |
CV805 |
Life-long Learning Agents for Vision
In the field of computer vision, models have typically been trained to perform well on a specific task or dataset by maximizing performance on a validation set. However, this approach only represents a small part of the types of scenarios that are of interest in real-world applications. In recent years, there has been growing interest in exploring different approaches to learning that can be applied in more diverse and dynamic environments. These approaches, which include lifelong learning, continual learning, meta-learning, transfer learning, multi-task learning, and out-of-distribution generalization, aim to enable models to be more robust, efficient, versatile, and well-behaved in non-stationary settings. This graduate course will focus on these emerging learning paradigms and how they can be applied to computer vision and multimodal learning tasks. |
4 |
ML801 |
Foundations and Advanced Topics in Machine Learning
This course focuses on building foundations and introducing recent advances in machine learning, and on developing skills for performing research to advance the state of the art in machine learning. This course builds upon basic concepts in machine learning and additionally assumes familiarity with fundamental concepts in optimization and math. The course covers foundations and advanced topics in probability, statistical machine learning, supervised and unsupervised learning, deep neural networks, optimization, reinforcement learning, and causality. Students will be engaged through coursework, assignments, and projects. |
4 |
ML802 |
Advanced Machine Learning
This course is designed to explore recent breakthroughs in machine learning and provide students with the necessary skills to conduct research and advance the field of machine learning. It will cover highly specialized topics related to large-scale optimization for real-world problems, including Large-Scale Training of Kernel Methods, Sparse Learning, Bilevel Optimization, Black Box Optimization, and Spiking Neural Networks. Prior knowledge of fundamental concepts in machine learning, optimization, and statistics is assumed. |
4 |
ML803 |
Advanced Probabilistic and Statistical Inference
The study of probabilistic and statistical inference deals with the process of drawing useful conclusions about data populations or scientific truths from uncertain and noisy data. This course will cover some highly specialized topics related to statistical inference and their application to real-world problems. The main topics covered in this course are latent variable learning, kernel methods and approximate probabilistic inference strategies. This course will provide an in-depth treatment to various learning techniques (likelihood, Bayesian and max-margin) and numerous practical complexities (missing data, observed and unobserved confounding, biases) for performing inference. |
4 |
ML804 |
Advanced Topics in Continuous Optimization
The course covers advanced topics in continuous optimization, such as stochastic gradient descent and its variants, methods that use more than first-order information, primal-dual methods, and methods for composite problems. Participants will read the current state-of-the-art relevant literature and prepare presentations to the other students. Participants will explore how the presented methods work for optimization problems that arise in various fields of Machine Learning and test them in real-world optimization formulations to get a deeper understanding of the challenges being discussed. |
4 |
ML806 |
Advanced Topics in Reinforcement Learning
The course covers advanced topics in Reinforcement Learning (RL). Participants will read the current state-of-the-art relevant literature and prepare presentations to the other students. Participants will explore how the presented methods work in simplified computing environments to get a deeper understanding of the challenges that are being discussed. Topics discussed include exploration, imitation learning, hierarchical RL, multi agent RL in both competitive and collaborative setting. The course will also explore multitask and transfer learning in RL setting. |
4 |
ML807 |
Federated Learning
This is a graduate course in a new branch of machine learning: federated learning (FL). In FL, machine learning models are trained on mobile devices with an explicit effort to preserve the privacy of users’ data. FL combines supervised machine learning, privacy, distributed and edge computing, optimization, communication compression, and systems. This is a new and fast-growing field with few theoretical results and early production systems (e.g., Tensor Flow Federated and FedML). This course aims for students to become familiar with the field’s key developments and practices, namely optimization methods for FL and techniques to address communication bottlenecks, systems and data heterogeneities, client selection, robustness, fairness, personalization and privacy aspects of FL. The evaluation of the course heavily relies on students’ paper presentations and the final project selected by the student. |
4 |
ML808 |
Advanced Topics in Causality and Machine Learning
In the past decades, interesting advances were made in machine learning, philosophy, and statistics for tackling long-standing causality problems, including how to discover causal knowledge from observational data, known as causal discovery, and how to infer the effect of interventions. Furthermore, it has recently been shown that the causal perspective may facilitate understanding and solving various machine learning / artificial intelligence problems such as transfer learning, semi-supervised learning, out-of-distribution prediction, disentanglement, and adversarial vulnerability. This course is concerned with understanding causality, learning causality from observational data, and using causality to tackle a large class of learning problems. The course will include topics like graphical models, causal inference, causal discovery, and counterfactual reasoning. It will also discuss how we can learn causal representations, perform transfer learning, and understand deep generative models. |
4 |
ML812 |
Advanced Topics in Algorithms for Big Data
This course is an advanced course on algorithms for big data that involves the use of randomized methods, such as sketching and sampling, to provide dimensionality reduction. It also discussed topics such as Sub-space Embeddings, Low rank Approximation, L1 Regression, Data Streams. The course lies at the intersection of machine learning and statistics. |
4 |
The Ph.D. thesis exposes students to cutting-edge and unsolved research problems in the field of natural language processing, where they are required to propose new solutions and significantly contribute towards the body of knowledge. Students pursue an independent research study, under the guidance of a supervisory panel, for a period of three to four years.
Course Title | Credit Hours | |
---|---|---|
NLP899 |
Natural Language Processing Ph.D. Research Thesis
PhD thesis research exposes students to cutting-edge and unsolved research problems, where they are required to propose new solutions and significantly contribute towards the body of knowledge. Students pursue an independent research study, under the guidance of a supervisory panel, for a period of 3 to 4 years. PhD thesis research helps to train graduates to become leaders in their chosen area of research through partly-supervised study, eventually transforming them into researchers who can work independently or interdependently to carry out cutting-edge research. |
32 |
RES899 |
Advanced Research Methods
This course will prepare students to produce professional-quality research and solve a practical research challenge in an organization based on an innovative, sustainable, and entrepreneurial research topic. This course will provide exposure to a variety of special topics, research integrity, ethics, organizational challenges, and needs related to various disciplines. Students will design and implement a research project suitable for conference presentation or journal submission relevant to their field of interest, in addition to peer-reviewing a paper. The instructor, and guest lecturers, as appropriate, will present topics necessary to develop well-rounded researchers, innovators, and entrepreneurs in the AI disciplines. |
2 |
The MBZUAl internship with industry is intended to provide the student with hands-on experience, blending practical experiences with academic learning.
Course Title | Credit Hours | |
---|---|---|
INT899 |
PhD Internship (up to four months)
PhD Internship (up to four months) |
2 |
MBZUAI accepts applicants from all nationalities who have a completed degree in a STEM field such as Computer Science, Electrical Engineering, Computer Engineering, Mathematics, Physics, or other relevant Science or Engineering major that demonstrates academic distinction in a discipline appropriate for the doctoral degree – either:
Applicants must provide their completed degree certificates and official transcripts when submitting their application. Senior-level students can apply initially with a copy of their official transcript and expected graduation letter and upon admission must submit the official completed degree certificate and transcript. A degree attestation from UAE MoE (for degrees from the UAE) or Certificate of Recognition from UAE MoE (for degrees acquired outside the UAE) should also be furnished within students’ first semester at MBZUAI.
All submitted documents must either be in English, originally, or include legal English translations.
Additionally, official academic documents should be stamped and signed by the university authorities.
Each applicant must show proof of English language ability by providing valid certificate copies of either of the following:
TOEFL iBT and IELTS academic certificates are valid for two (2) years from the date of the exam while EmSAT results are valid for eighteen (18) months. Only standard versions (i.e. conducted at physical test centers) of the accepted English language proficiency exams will be considered.
Waiver requests from eligible applicants who are citizens (by passport or nationality) of UK, USA, Australia, and New Zealand who completed their studies from K-12 until bachelor’s degree and master’s degree (if applicable) from those same countries will be processed. They need to submit notarized copies of their documents during the application stage and attested documents upon admission. Waiver decisions will be given within seven (7) days after receiving all requirements.
Submission of GRE scores is optional for all applicants but will be considered a plus during the evaluation.
In a 500- to 1000-word essay, explain why you would like to pursue a graduate degree at MBZUAI and include the following information:
The research statement is a document summarizing the potential research project an applicant is interested in working on and clearly justify the research gap which the applicant would like to fill in during the course of his/her study. It must be presented in the context of currently existing literature and provide an overview of how the applicant aims to investigate the underlying research project as well as predict the expected outcomes. It should mention the relevance and suitability of the applicant’s background and experience to the project and highlight the project’s scientific and commercial significance. The research statement should include the following details:
Applicants are expected to write the research statement independently. MBZUAI faculty will NOT help write it for the purpose of the application. The MBZUAI Admission Committee will review the submitted document and use it as one of the measures to gauge and assess applicants’ skills.
Applicants will be required to nominate referees who can recommend their application. M.Sc. applicants should have a minimum of two (2) referees wherein one was a previous course instructor or faculty/research advisor and the other a current or previous work supervisor.
To avoid issues and delays in the provision of the recommendation, applicants have to inform their referees of their nomination beforehand and provide the latter’s accurate information in the online application portal. Automated notifications will be sent out to the referees upon application submission.
All applicants with complete files, including the required number of recommendations, will be invited to participate in an online screening exam to assess their knowledge and skills. Completion of the exam is not mandatory but highly encouraged as it would provide additional information to the evaluation committee. Waiving the exam is only recommended for those students who can provide strong evidence of their research capability, subject matter expertise, and technical skills.
Exam Topics
Math: Calculus, probability theory, linear algebra, trigonometry and optimization
Machine learning: Machine learning algorithms and concepts such as linear regression, decision trees, loss functions, support vector machines, classification, regression, clustering, convolutional neural networks, dimensionality reduction, neural networks and unsupervised learning
Programming: Knowledge surrounding specific programming concepts and principles such as algorithms, data structures, logic, OOP, and recursion as well as language–specific knowledge of Python
Applicants are highly encouraged to complete the following online courses to further improve their qualifications :
The exam instructions are available here
A select number of applicants may be invited to an interview with faculty as part of the screening process. The time and instructions for this will be communicated to applicants on timely bases.
Only one application per admission cycle must be submitted; multiple submissions are discouraged.
Application portal opens | Regular deadline | Decision notification date | Late deadline |
---|---|---|---|
1st October 2024 (8:00 AM UAE time) |
15th January 2025 (5:00 PM UAE time) |
31st March 2025 (5:00 PM UAE time) |
31st May 2025 (5:00 PM UAE time) |
High-calibre applicants who apply by the ‘Regular Deadline’ and have complete applications (including the required recommendations) will be given full consideration. | The online application portal will remain open until the ‘Late Deadline’. We do not guarantee that these late applications will be given full consideration. |
Detailed information on the application process and scholarships is available here.
A typical study plan is as follows:
SEMESTER 1 NLP801 Deep Learning for Language ProcessingDisclaimer: Subject to change.
AI is reshaping industries worldwide. At MBZUAI, recent research initiatives spotlight key areas: transport, health, environment, and technology.
More informationThe Incubation and Entrepreneurship Center is a leading AI-native incubator with the aim to nurture and support the next generation of AI-driven startups.
More informationWe’ll keep you up to date with the latest news and when applications open.