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Abstract

Acute Kidney Injury (AKI) affects more than 13 million people annually and increases
the risk of death in patients[26]. The severity of AKI also contributes to the increase
in associated costs of a patient’s treatment. The early prediction of AKI could enable
clinicians to focus on preventive treatment for at-risk patients. The adoption of Electronic
Health Records (EHR) in medical institutions allows healthcare professionals to access
patients’ health more efficiently and develop personalized treatment trajectories, thereby
improving healthcare quality. Therefore, the AKI risk prediction algorithm based on EHR
could enable clinicians to devote more time directly to treating patients instead of reviewing
tons of information related to patients’ visits.

In this thesis, we used the publicly available EHR database MIMIC-IV v2.0 to develop
an AKI risk prediction framework for patients admitted to Intensive Care Units (ICU).
The framework includes the algorithm for AKI detection from creatinine value and urine
output, as well as the prediction of next-day AKI onset from the data collected on the first
day in the ICU. The AKI prediction task was implemented for three different granularity
levels: predicting an AKI onset of any stage, predicting the AKI onset of stages 2 and
3, and predicting the AKI onset of stage 3, which is the most severe case. Due to the
imbalance of the given data, we experimented with several balancing techniques to tackle
this problem.

In addition to the classical machine learning approach with manual feature selection,
we have also explored an LSTM-based approach applied to the prediction of AKI. Due to
the variety of data available for each patient, it is challenging to assess which information
could be the best predictor. Thus, the text classification model used unstructured textual
data to make predictions.

The extreme gradient boosting (XGBoost) machine learning algorithm, trained on less
than 10 thousand patients in imbalanced data settings, achieved better performance than
the deep learning text classification model. The latter, in turn, showed the ability to
capture meaningful information from the text.
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Chapter 1

Introduction

1.1 Motivation

Acute kidney injury (AKI) is a medical term for a condition that is characterized as a
sharp deterioration in the excretory function of kidneys. Physicians typically diagnose this
condition by the increased level of creatinine in a patient’s body, which is a final product
of nitrogen metabolism. It also can be diagnosed by a sharp decline in urine excretion
[5]. AKI is linked to a 4-10-fold increase in the number of deaths which, hence, poses a
significant threat to a patient’s life. Besides high mortality, this condition increases the
length of the hospital stay and associated expenses for patients. Since this injury affects
8% to 16% inpatient admissions, it has a considerable impact on the economy [12].

According to [37], 1% of the National Health Service budget of England is spent on
treating AKI patients and other costs related to this syndrome. In the United States,
almost half of a million patients suffer from this disorder, and the related treatment costs
are from 4.7 to 24.0 billion every year. Moreover, the expenses are increasing with the
severity of cases. For example, the difference in cost of the stay for non-AKI patients and
high-severe AKI patients who require dialysis is from $11, 016 to $42, 077 per person [12].

Considerable effort was made to predict and recognize this condition, but only a few
predictors are used in clinical practice. This is because their sensitivity and specificity are
not high enough, or they detect deterioration too late. Current methods rely on shifts in
creatinine (SCr) as a biomarker of renal dysfunction. However, this shift happens after
approximately 50% of the glomerular filtration rate (GFR) is already lost, thereby delaying
the treatment.

According to the Tomasev Nenad [40], for predictors to be clinically-effective, they
should satisfy the following requirements:

• offering meaningful solutions for preventable conditions;

• customizable for individual patients;

• providing enough context information to make informed clinical decisions;

2



• applicable to a wide range of clinical groups.

The early prediction of kidney decline could be considerable support for clinicians since
about 11% of in-hospital deaths could be prevented by promptly recognizing and treating
patients at risk. For achieving this goal, early prediction of patient health risks is critical
to facilitate the detection of such cases [40].

1.2 Research objectives

Since the task of predicting AKI is quite broad and not straightforward, different studies
covered different aspects of it and formulated the objectives differently. For instance,
an algorithm can predict an AKI onset without considering its stage (AKI, no AKI) or
predict a specific event stage. In terms of the prediction window, an algorithm can make
predictions for the next day or the next several months. Besides, an algorithm can be
trained on different cohorts, such as patients in ICU wards or undergoing surgery.

Making daily predictions and raising the alert if a patient is at high risk of developing
AKI for the next day would assist healthcare professionals. This is because they are
limited by time constraints, and it is challenging to cover all the patients in providing a
comprehensive assessment of the medical records produced by them.

This thesis aims to explore the following research objectives:

1. using the publicly available Electronic Health Records (EHR) dataset and clinical
criteria for diagnosing AKI develop and implement an algorithm for detecting AKI
onset and labeling the data;

2. develop a machine learning-based framework for predicting the AKI onset and its
stage on the second day of an ICU stay using the data collected on the first day of
the stay;

3. explore the different approaches to tackle the imbalance problem in the data within
the scope of the task, described in the second objective;

4. explore and evaluate a text classification LSTM-based approach toward the problem
described in the second objective by formulating it as a text classification problem
and using unstructured EHR data.

1.3 Overview of the thesis

This thesis is structured in the following manner:

• Chapter 1 describes the high overview of the main aspects of the thesis and introduces
its research objectives;
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• Chapter 2 walks the reader through the clinical definition of AKI, the introduction to
Natural Language Processing (NLP) in the healthcare domain, and the EHR concept.
Finally, it includes the literature review of related works for predicting AKI using the
classical machine learning and deep learning approaches presented in this chapter;

• Chapter 3 describes the methodology addressing the research objectives. First, it
focuses on the data we work with: analyzes the cohort, describes how we excluded
samples from the final cohort, explains what prediction variables were used, and data
preprocessing. Second, we describe and analyze the label acquisition process. Finally,
the prediction model architecture is presented for predicting AKI as an text classi-
fication task, as well as the classical machine learning approach for AKI predicting
task;

• Chapter 4 describes the experimental design for the conducted experiments and
presents the results of these experiments;

• Chapter 5 contains a discussion of the results and findings from the experiments;
the limitations and contributions of this work; and suggests the directions for future
research;

• Chapter 6 summarizes the work.
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Chapter 2

Background

2.1 Clinical background

2.1.1 Defenition of AKI

There are several criteria to determine AKI, which use urine output or serum creatinine
level. Particularly the Acute Kidney Injury Network (AKIN) criteria [33], and the RIFLE
(risk, injury, failure, loss, end-stage) criteria [6]. Later, the new definition was invented by
merging the RIFLE and AKIN criteria: KDIGO (the Kidney Disease: Improving Global
Outcomes) criteria [22].

According to KDIGO, an AKI case occurs when a patient meets at least one of the
conditions listed below:

• Within 48 hours, SCr level has increased by 0.3 mg/dL or greater;

• Within the last seven days, SCr level, has increased to 1.5 times baseline or greater;

• Within 6 hours, urine output is less than 0.5 mL/kg/h.

In addition, KDIGO provides definitions for three stages of the severity of AKI:

Stage Creatinine Urine output

1
1.5− 1.9 times more than baseline or

≥ 0.3mg/dL increase
< 0.5 mL/kg/h within 6 h

2 2− 2.9 times more than baseline < 0.5 mL/kg/h within 12 h

3
3 times more than baseline or

≥ 4mg/dL or
renal replacement treatment is started

< 0.3 mL/kg/h within 24 h or
anuria for 12 h or more

Several conditions often pose AKI, for example, having a slow blood flow or direct
damage to the kidneys 1. A recent study conducted in 2020 showed that 19% of adult

1https://www.elsevier.com/books/ferris-clinical-advisor-2020/ferri/978-0-323-67254-2
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people hospitalized due to active SARS-CoV-2 (severe acute respiratory syndrome which
provokes COVID-19 disease) experienced AKI after or during the disease [15]. The rate of
death among AKI patients was 47%. Moreover, the study showed that neutrophil count at
admission and other factors such as age, chronic kidney disease, and mechanical ventilation
are also risk factors for AKI. The other study from Mexico showed that morbid obesity of
patients with COVID-19 was linked to a higher risk of AKI and death [14].

2.1.2 Electronic Health Records

The term electronic health records (EHR), also known as personal health records (PHRs)
or electronic medical records (EMRs), is extensively used in the clinical community. It de-
scribes a conception of extensive cross-institutional long-term information collection about
patients’ health. EHR is a database comprised of various types of data related to a pa-
tient’s physical condition, treatment, and health in general [19]. Particularly demographic
information such as age and gender, diagnoses, surgeries, and laboratory tests. The pa-
tient actively participates in their treatment by accessing, adding, and updating it, thereby
supporting care.

EHR consists of results and a summary of interactions between healthcare providers
and patients. Therefore, these databases mirrored the style of healthcare professionals,
their knowledge, and the specifications of the systems they work with. To systematize and
unify the structure of EHR the Institute of Medicine in 1991 [20] determined the golden
standard and described functions of EHR.

Considering the comprehensiveness and informativeness of EHR data, Deep Learning
predictive models are expected to boost personalized medicine and increase the quality of
healthcare.

2.2 Natural Language Processing in healthcare

NLP is a field where Artificial Intelligence, Computer Science, and Linguistics meet to
allow computers to learn how to understand human languages. Classical supervised ma-
chine learning techniques such as Support Vector Machines (SVM), Conditional Random
Field (CRF), and Maximum Entropy are used for various NLP tasks[10][25][35]. Namely,
breaking a text into pieces (tokenization) and named entity recognition which is identifying
entities (e.g., people’s names, cities, mobile numbers), to name a few. Another example
is text classification - analyzing a piece of text and assigning it to a specific category,
for example, fake or real (fake news detection), positive or negative or neutral (sentiment
analysis), or categorizing documents by topic.

Although these machine learning models are still widely used for some tasks, deep
neural nets currently have the largest capacity for working with high-dimensional text
data. Thus, Recurrent Neural Nets (RNNs) such as Gated Recurrent Unit (GRU) or Long
short-term memory (LSTM) models give a sense of historical information depending on
the position of a word in a sentence. Another example is transformers, which utilize the
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attention mechanism to identify the most meaningful information in the text. The latter
is currently showing state-of-the-art results in the NLP field[41].

Recent studies showed that NLP techniques could be applied to medical data due to
their similarity to textual data. For example, suppose a patient has several visits to a
hospital. Each diagnosis made on a particular visit can be seen as a word, the sequence
of the diagnoses made during the visit as a sentence, and all history of diagnoses of this
patient as a document [27]. Similarly to diagnoses, other information related to a patient’s
visit (e.g., prescribed medications, vital signs, demographics) might also be used. Deep
neural models can be trained using this information to predict a patient’s future health
trajectories and risk of a specific disease. This can help obtain meaningful insights and
support clinicians in decision-making. Above mentioned data can be acquired with the help
of EHR systems, which are currently adopted by roughly 95% of critical access hospitals 2.

2.3 Literature review

2.3.1 Classical machine learning models

Bell et al [3] used only four variables for the binary logistic regression model to predict the
AKI stage. Namely, they used age, estimated glomerular filtration rate (eGFR) category,
previous diabetes mellitus, and heart failure diagnoses. They acquired the weighted scores
identifying the stage of AKI by measuring the change in SCr. They defined baseline SCr as
a median value from 8 to 365 days before the given SCr measurement. If no measurements
are available for this period, they defined the baseline as the lowest level of SCr from 0 to
7 days before the given measurement. In case of no SCr baseline measurement available,
the shift of SCr more than 26µmol/L in 48 hours was taken as AKI stage 1.

The C-statistics of the model developed on 273,450 patients from the Tayside region
of Scotland was 0.80 (0.80-0.81) with (95%CI). Moreover, it was evaluated on two more
cohorts: from Kent, UK, and from Alberta, Canada. The performance was 0.76 (0.75-
0.76) in the large Canadian cohort with 1,173,607 patients, and 0.71 (0.70-0.72) in the
Kent cohort with 219,091 patients. This quite simple score with only four variables is one
of the few externally validated predictors with such a considerably big group of patients.
Since the model did not use any medications, it is a reasonable future research goal that
could improve the model’s performance.

Many existing methods use logistic regression for predicting AKI cases. However, there
is a limitation in using a logistic regression approach. Logistic regression assumes a linear
dependence of all predictor and dependent variables, weakening the model’s discrimination
power, i.e., the ability to discriminate between positive and negative samples.

Sheikh S. Abdullah et al. [1] studied the risk of a patient being readmitted to
a hospital with AKI during the next three months after the discharge. They conducted
experiments on a cohort of EHR of 905, 442 older patients (from 65 years and older) where

2https://www.definitivehc.com/blog/hospital-ehr-adoption
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Ensemble-based
methods

Machine Learning
Techniques

Sensitivity Specificity ROC AUC

XGBoost Linear boosting 0.86 0.77 0.84± 0.033
Tree boosting 0.89 0.81 0.88± 0.031

RUSBoost SVM (sigmoid) 0.90 0.79 0.88± 0.029
SVM (radial) 0.71 0.87 0.85± 0.034

Undebagging SVM (sigmoid) 0.89 0.71 0.85± 0.034
SVM (radial) 0.79 0.90 0.86± 0.033

SMOTE-Bagging SVM (radial) 0.90 0.74 0.86± 0.029

Table 2.1: Performances of the models with the best sensitivity and specificity scores
grouped by ensemble-based methods. [1]

they evaluated the performance for 31 AKI prediction models. Each model was a com-
bination of two or more out of the following classifiers - SVM with four kernels (linear,
radial, sigmoid, polynomial), logistic regression, naive Bayes (NB), classification and re-
gression tree (CART), C5.0. In addition, they used two sampling methods - SMOTE and
undersampling, and three ensemble methods, such as XGBoost, Bagging, and Boosting.

Since data was highly imbalanced (with only 5993 AKI patients), the traditional ma-
chine learning techniques failed to map the positive class correctly. This is because they
aim to reduce the total error, and the positive class does not contribute much to it. There-
fore, four sampling and ensemble methods and their combinations were used to address
this issue. All of the models were assessed using a 10-fold cross-validation method.

The best performance in terms of ROC AUC amounted to 0.88. This result was achieved
using (1) a combination of SVM with sigmoid kernel and RUSBoost and (2) XGBoost
with tree boosting. Considering that it is a patients outcomes prediction task, a sensitivity
(the ratio of actual positive samples that are predicted correctly as such (i.e., SN =
TP/(TP +FN)) is more important than a specificity (the ratio of actual negative samples
that are predicted correctly as such (i.e., SP = TN/(TN + FP )). SVM with sigmoid
and radial kernels combined with RUSBoost and SMOTE-Bagging achieved a sensitivity
of 0.90, which was the best result among all models. Table 2.1 shows the performances of
the models used in the study.

The work of Sheikh S. Abdullah has some limitations that should be addressed in future
research. First, the training and testing were conducted on the cohort of old patients from
Ontario. Therefore, models will not generalize well in the case of different locations and
ages of a patient. Second, records for patients who did not have complete demographic
information were excluded from the final cohort, which may affect the performance due to
the high probability of missing the rare cases. Third, the work does not imply any ranking
system for predictors and only establishes the most significant ones because of the different
approaches to identifying feature importance. Fourth, the models used diagnosis codes to
define AKI cases. Hence, it is not capable of identifying the severity of a case.

Ke Lin et al.[28] conducted a study where they showed that the Random Forest
model outperforms three other methods in predicting the probability of a patient’s in-
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hospital death given that they have AKI. The final cohort consisted of 19,044 AKI patients
with 2, 586 patients who died in the hospital. They used several methods to estimate the
mortality of AKI patients: Random Forest (RF) with 1000 trees, Artificial Neural Network
(ANN) with one hidden layer of 10 nodes, and SVM.

During the data preprocessing step, they filled missing values with their corresponding
means and excluded the outliers. For the time-stamped measurements, the maximum and
the minimum values during the first 24 hours of a patient’s stay in the ICU were used as
two parallel inputs. The average performance measures were generated after five training
rounds with 5-fold cross-validation.

The RF model was compared to three other models and outperformed them in terms of
ROC AUC (0.866, 95%CI : 0.862− 0.870) and Brier score (0.085, 95%CI : 0.084− 0.086).
Both RF and SVM models had the best discrimination power. It is worth noting that the
RF model marginally overstated the death rate of low-risk patients while underestimating
the death rate of high-risk patients. Both models slightly underestimated the death rate
of patients.

The given study has several strengths: the availability of the data, the credible per-
formance of the models, and the use of 5-fold cross-validation to verify the results. In
addition, the variables used for prediction are clinically available; therefore, the model can
be used in clinical practice. Moreover, the RF algorithm allows tracking each variable’s
importance for the model. Consequently, this approach can achieve good interpretability.

However, this study has a few drawbacks. First, the data comes from one distribution:
patient data collected in one medical center from 2001 to 2012. The model might not
perform well when working with natural clinical settings or other datasets. Second, some
biomarkers related to AKI are not present in the dataset and were not included in the
predicting variables [29].

Cheng et al[9] conducted another revealing study in 2017 in China. They showed
that the RF model had better performance in the AKI prediction than the other machine
learning methods, e.g., Logistic Regression and AdaboostM1. The study aimed to answer
three questions:

1. How much data prior to admission improves the prediction performance?

2. What is the earliest time of predicting AKI with good predicting power?

3. How much do the specific predictors contribute to the model performance?

The final cohort consisted of 48, 955 admissions (33, 703 patients) of patients aged
18 to 64 admitted to an academic hospital (the University of Kansas Medical Center –
KUMC) and stayed there for at least two days from November 2007 to March 2016. They
excluded patients with less than two measurements of SCr and those with eGFR lower
than 60mL/min/1.73m2 or SCr 1.3mg/dL during the first 24 hours of hospital stay. The
final cohort included 48, 955 admissions (33, 703 patients) with 9%(4, 405) AKI admissions.
The last laboratory test values and vitals before a prediction point were divided into three
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categories: present and normal, present and abnormal, and unknown. Vital signs and
missing laboratory tests were categorized as ’unknown’ because deciding not to perform
specific measurements can be potentially informative.

For the first objective, they were iteratively changing the lower bound of the prediction
window to see how much the amount of the prior data affects the performance of the
model. The best AUC values of prediction models on data collected before and after
hospital admission were achieved by RF for predicting the AKI case 1 day before the
event, which showed that data prior to admission does not improve performance.

To address the second objective, they changed the upper bound of the prediction win-
dow by moving the prediction point further from the event (AKI or discharge from the
hospital). They were aiming to learn how well an AKI event can be predicted and how
early. The results showed that model performance drops when the time window between
prediction time and AKI event time expands. The Random Forest’s AUC dropped from
0.76 at 1-day prior to 0.67 at 5-days prior. However, the AdaBoostM1 had a slightly better
AUC, with the time-to-event horizon extended to four or five days before the event. In
addition, the Logistic Regression had slightly better precision and recall for one and two
days prior settings, respectively.

For the third objective, they combined the predictors in several groups, then iteratively
removed the groups and trained the model with the rest groups’ predictors. This exper-
iment showed that the medications and comorbidities had the most impact on the 1-day
prior AKI prediction performance and the demographics variables affected the performance
the least.

According to recommendations from the 15th Acute Dialysis Quality Initiative (ADQI)
consensus conference in 2016, the prediction can be clinically valuable if it was made from
48 to 72 hours before the occurrence of AKI event [38]. The study showed that the RF
model could predict the AKI 2-days and 3-days before and achieve AUC of 0.73 and 0.70,
respectively. However, this study has several limitations. First, the final cohort consisted
of relatively young patients. Taking into account that old patients are more at risk of
AKI due to longer exposure to chronic diseases and nephrotoxins, the model might not
generalize well. Second, the only patients with normal SCr level and with eGFR of at
least 60mL/min/1.73m were incorporated in the final cohort. Third, the study did not
consider the time-dependence of the comorbidity variables. Therefore, the comorbidities
that developed during the admission might be misrepresent. Finally, the urine output
measurements were not included in the predictors, although it is one of the defining criteria
of AKI.

Wang et al.[42] proposed the Ensemble Time Series model (ETSM) based on XGBoost
for predicting AKI onset 24 and 48 hours in advance. Vital signs, laboratory test results,
and medications were used as predictors. Combinations of drugs taken by patients on
each day of admission during the observation period were grouped into sequences. In turn,
the sequences were used to calculate Indicator Frequency and Inverse Cohort Frequency
(IFICF). They showed the following top 10 important combinations for predicting AKI:

• norvancomycin
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Dataset AUC Sensitivity F1-score AP
24h prediction

ICUC 0.81 0.75 0.58 0.59
MIMIC-III 0.95 0.95 0.96 0.98

48h prediction
ICUC 0.78 0.68 0.44 0.41

MIMIC-III 0.95 0.98 0.98 0.98

Table 2.2: Performances of ETSM models on ICUC and MIMIC-III [42]

• ciprofloxacin lactate and sodium chloride injection

• indometacin enteric-coated tablets

• piperacillin sodium/tazobactam sodium

• ibuprofen

• ceftazidime for injection

• cefathiamidine for injection

• aztreonam for injection

• naproxen

The impact of medication information on the model performance was shown by training
the same model without adding drug records. The difference in AUC between the two
models amounted to 0.07 when predicting AKI 24 hours in advance (AUC 0.74 and AUC
0.81).

This study used two datasets to build and evaluate the models: ICUC (ICU in China),
which is quite imbalanced with a prevalence of negative samples, and a more balanced
MIMIC-III. They used 11,501 and 10,921 samples to predict AKI onset in 24 and 48 hours
from ICUC, as well as 46,593 and 30,217 samples from MIMIC-III, respectively. The
random undersampling technique yielded better results than random oversampling and
cost-sensitive XGBoost. Table 2.2 shows the model’s performance on both datasets for 24
and 48 prediction windows.

The limitation of this study is that the model was trained on ICU patients’ data only.
Therefore generalizability of the model on patients from other departments is subject to
further investigation.
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Labels 25% Precision 33% Precision 40% Precision 75% Precision
any AKI 0.68 0.56 0.47 0.12

stages 2 or 3 0.78 0.71 0.65 0.28
stage 3 0.89 0.84 0.8 0.4

Table 2.3: The sensitivity of the model for predicting AKI up to 48 hours with different
precision thresholds.

2.3.2 Reccurent Neural Networks

Tomasev et al.[40] trained the RNN on a dataset of 703, 782 adult patients from the US
Department of Veterans Affairs (VA). The ratio of KDIGO AKI admissions in the dataset
was 13.4%. The model provided estimates for the risk of AKI during the following 48
hours at each time step and the corresponding uncertainty degree. The model achieved
92.1% of ROC AUC and 29.7% of PR AUC, corresponding to 55.8% inpatient cases of
any severity of AKI that were predicted correctly within a given time window. Regarding
the stage 3 AKI, 84.1% of the cases were correctly predicted up to 48 hours. Table 2.3
shows the sensitivity of the model for predicting different stages of AKI with fixed precision
thresholds.

During data preprocessing, each patient was represented by a sequence of blocks. Each
block consisted of diagnoses, procedures, prescriptions, medications, laboratory results,
health factors, vital signs, and note titles recorded within the 6 hours window. In other
words, each day consisted of four six-hour blocks and one additional block of events with
no time recorded. The model additionally might take an embedding of the preceding 48
hours and a 6-month or 5-year history.

All variables were initialized with normalized initialization (Xavier) and then trained
using the Adam optimizer. The model’s architecture is shown in Figure 2.1. The training
process was implemented as follows:

1. the embedding layers of the model transform the input;

2. the embeddings are passed into an RNN with stacked multiple-layer where all layers
are connected;

3. the output of the RNN is passed into a prediction module which provides the AKI
probability over eight feature prediction windows.

The given study has several strengths. First, the features used for predictions were
chosen based on the opinion of six experienced clinicians. Second, the uncertainty for
predictions was provided by extensive training of an ensemble consisting of 100 models, a
set of hyperparameters that are initialized with different seeds and fixed. Third, validation
set performance was used to decide in favor of the proposed model.

However, this study also has several limitations. First, patients with less than one
year of available EHR data before admission were excluded. Hence, it is unclear how the
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Figure 2.1: The architecture of the RNN proposed by Tomasev [40].

model will perform on a patient without prior medical history. Second, the AKI cases were
defined based only on the creatinine level, while the urine criteria were not considered
for identifying AKI. Consequently, it can lead to an increasing number of false negative
diagnoses.

Nina Rank et al. [34] compared the performance of experienced clinicians and the
RNN model trained on a balanced set of 2224 admissions. This model surpassed clinicians
by a substantial margin (AUC = 0.901vs.0.745, p < 0.001) and provided real-time predic-
tions (every 15 minutes) of AKI during the first seven days after cardiothoracic surgery.
Compared with clinicians, the RNN had a higher sensitivity, which was 0.851. Moreover,
sensitivity reached a maximum of 0.971 on the interval 2-6 hours before the onset. The
lower bound of achieved sensitivity was 0.750 on the 48–168 hours interval before the onset.
The Adam optimizer and learning rate of 0.001 were used for training.

It is worth noting that this study correctly defined 30% of all AKI cases using the
urine criteria in addition to creatinine criteria. It makes the given study different, for
example, from the work of Cheng et al.[9] and Tomasev et al.[40], where they used only
creatinine criteria. Nina Rank et al. showed that 11% of the training population and 12%
of the testing population in their study satisfied the urine output criteria and would have
been labeled as false negative without using it. In contrast to Tomasev’s study, the only
information generated after the admission was used, which makes it useful in a natural
clinical setting where patients may not have a previous medical history.

Kipyo Kim et al [23] conducted another study on predicting AKI in 2021. They
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proposed a prediction model based on a stacked RNN structure using the information
collected between 2013 and 2017 in two hospitals in Korea. For training, they utilized
the data of 69, 081 patients from the first hospital and the data of 7675 patients from the
same hospital for internal validation. In addition, they externally validated the model on
the other cohort of 72, 352 patients from the second hospital. The final cohort comprises
patients older than 18 with at least 48 hours of recorded information. The patients falling
under the following criteria were excluded from the final cohort:

• no baseline SCr measurements;

• SCr greater than 4.0 mg/dL or eGFR less than 15 mL/min/1.73 m2;

• The final stage of kidney disease at the time of the admission;

• absence of laboratory measurements used in the model;

• absence of Body Mass Index (BMI);

• absence vital signs measurements;

• an AKI diagnosis on the first day of admission.

The model used 107 predicting variables divided into static and dynamic categories.
Comorbidities and demographics were defined as static variables, whereas vital signs, lab-
oratory tests, and clinical conditions were defined as dynamic. Categorical features were
coded as numbers and percentages. For continuous variables, they used min-max nor-
malization. It is worth noting that the training set had a higher number of patients and
a higher average age than the external validation set. The importance of the variables
was estimated using the Shapley Additive Explanations (SHAP) algorithm [30], as well
as other model-agnostic methods. The importance of several dynamic variables, such as
white blood cell count, diuretic use, and pulse rate, increased with time. Moreover, SCr
levels, white blood cell counts, and vital signs had the highest impact the day before the
prediction point. The hemoglobin and albumin, in contrast, had the highest impact 5-6
days before the prediction.

The AKI cases were defined according to KDIGO creatinine criteria, where the baseline
SCr corresponded to the minimum value within two weeks before the admission or the
minimum value measured between 90 or 180 days prior to the admission, or the value
measured on the first day of the admission. The overall architecture consists of two models:
model 1 predicts the AKI onset within seven days of the selected time point, and model
2 predicts the SCr values up to 48 hours from the present. Model 1 has many-to-one
architecture, where the input is seven sequences (corresponding to the sliding window
length), and the output is whether AKI occurs in the next seven days from the given
time point. Model 2, in turn, has many-to-many architecture, where the input is seven
sequences, and the output is the three predicted trajectories of SCr values after 1, 2, and
3 days from the present.
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Model 1 achieved the AUC of 0.84 (external validation) and 0.88 (internal validation)
for any AKI development stage, along with AUC of 0.90 (external validation) and 0.93
(internal validation) for stage 2 and 3 severity of AKI. Model 2, in turn, obtained mean-
squared errors of 0.04 − 0.09 and 0.03 − 0.08 for patients at higher risk and lower risk of
AKI, respectively. The limitation of this study is that the urine criteria were not used
for identifying AKI. Another limitation is that the important in medical domain metrics
such as sensitivity and precision were not reported. One of the main strengths of the given
study is that the model was externally validated on an extensive cohort of patients from
the other hospital, which makes the results more trustworthy.

Chen et al. [8] made use of records from ICU stay from the MIMIC-III dataset and
attention-based neural network to predict AKI onset, AKI stage, and AKI onset time
interval in three scenarios, namely:

1. Case 1, when they use the first 24 hours data from ICU stay to predict the next 24
hours outcome in patients using onset intervals set to 12 hours;

2. Case 2, when they use the first 24 hours data from ICU stay to predict the next six
days outcome in patients using onset intervals set to 24 hours;

3. Case 3, when they use data from the first 48 hours of ICU stay to predict the next
five days’ outcome in patients using onset intervals set to 24 hours.

The model consists of an LSTM encoder, followed by an attention module and a fully-
connected decoder. Hidden states outputted by the encoder are passed to the attention
function to produce a context vector which, in turn, is used by the decoder model to
generate predictions. In addition, a Temporal Convolutional Network (TCN) is used to
predict future values of the temporal features such as the laboratory test results and the
vital signs.

The experiments showed that the proposed attention-based deep learning model out-
performed logistic regression, random forest, and the Gradient Boosted Trees (GBTs), as
well as LSTM model in the AKI case prediction task. They also showed that the model
with predicted future values had a 0.04 boost in AUC compared to the one without it.
Moreover, the model reached AUC 0.85 in experimental case 3. In contrast, it reached
AUC 0.82 in experimental case 2, which suggests that increasing the observation window
from 24h to 48h positively affected the predictive power of the model. When predicting
onset intervals in experimental cases 2 and 3, the model had a better AUC (around 0.7) for
predicting the first two 24h onset intervals, compared to predicting the rest onset intervals
(AUC 0.52).

The given study also evaluated the importance of the different features for predict-
ing AKI onset using the weights from the attention function. The following variables
were found to be the most important for the model to make predictions: urine output,
creatinine, blood urea nitrogen (BUN), blood glucose, sodium, as well as non-steroidal
anti-inflammatory drugs (NSAIDs), and lipid lowering medications. Similarly, the fol-
lowing comorbidities were also highly-correlated with AKI: diabetes, peripheral vascular,
hypertension, and congestive heart failure.
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2.3.3 Transformers

In their work, Yikuan and Shishir proposed a BERT-based transformer model named
BEHRT, which predicts the future diagnoses for subsequent hospital visits from the medical
history [27][13]. The authors built and evaluated the model on more than 1.6 million
patients from Clinical Practice Research Datalink (CPRD) dataset from the UK. The
BEHRT model takes as an input the text sequence of ICD-codes (i.e., words) corresponding
to patients’ diagnoses from previous hospital visits.

The model was pre-trained using the masked language modeling (MLM) technique
when some of the words in a sentence are hidden from the model, and the objective is to
predict these words. In the fine-tuning stage, the authors defined three downstream tasks
to train and evaluate the model performance: prediction of the diagnoses in the next visit,
during the next six months, and the next 12 months.

BEHRT outperformed previous state-of-the-art by 8.0–13.2% in average precision scores
among all three downstream tasks. In addition, the model showed the ability to find
relationships between different diagnoses due to its self-attention mechanism.

One of the crucial contributions of this study is experimenting with the novel way of
approaching a healthcare problem as an text classification task using the similarity of EHR
and natural language. This is different from the traditional way of utilizing EHR in disease
prediction models, where manually selected concepts are represented as input features [2].
This approach opens up opportunities to utilize the most available information without
relying on manual feature selection. However, one limitation of this study is using only
diagnoses without considering other concepts related to patients’ health, such as prescribed
medications, laboratory test results, and procedures.

16



Chapter 3

Methodology

3.1 Data

3.1.1 MIMIC IV Dataset

The Medical Information Mart for Intensive Care (MIMIC-IV) v2.0 dataset [21] was used
for experiments. This dataset contains EHR collected by the clinical information system for
critical care from patients admitted to the critical care units of the Beth Israel Deaconess
Medical Center between 2008-2019. The database includes information regarding patients’
hospital encounters, such as admissions, demographics, transfers, diagnoses, laboratory
test results, vital signs, prescribed medications, and procedures.

3.1.2 AKI labels acquisition

The clinically effective predicting algorithm should identify if a patient is at a high risk
of AKI in place, i.e., during the current visit to the hospital. Therefore, the model must
make fine-grained predictions timewise. Since the diagnoses are inserted into the MIMIC-
IV database at the end of a patient’s visit or during the discharge, they do not have
corresponding timestamps. Due to that, straightforward use of the AKI diagnoses as
labels for each day in the ICU is impossible.

Thus, the day-level labels were obtained directly from laboratory test results of crea-
tinine measurements and values of urine output volume using KDIGO criteria [22]. The
label is represnted by 0 or 1 for a given prediction time window (24 hours) for a given
sample (an ICU stay). The labels based on creatinine criteria were obtained using the
following procedure:

1. For every day, two baseline values of creatinine corresponding to two AKI criteria
were calculated (the baseline 1 - the minimum value within the last two days and
the baseline 2 - the minimum value within the last seven days). If there is no SCr
measurement for the last seven days, a median creatinine for the last 360 days was
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Figure 3.1: AKI label assigning algorithm based on creatinine part of KDIGO criteria.

used as baseline 2. Otherwise, if there are no baseline values were not available (e.g.,
a patient does not have any creatinine measurements within the last 360 days), the
NaN value has been assigned to this baseline.

2. Then, if a patient has creatinine measurement on a given day (C1) more or equals 4.0
mg/dL, we assign label 1 to stages 1,2 and 3 (since satisfying AKI of stage 3 criteria
implies satisfying AKI of stages 1 and 2 criterias).

3. Next, if baseline 1 is available, we calculate the ratio between C1 and baseline 1 (RV),
and if RV is more or equal to 3.0, we assign label 1 to stages 1,2, and 3. If RV is less
than 3.0 but more or equal to 2.0, we assign label 1 to stages 1,2, and 0 to stage 3.
Finally, if RV is less than 2.0 but more or equal to 1.5, we assign labels 1 to stage 1
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Figure 3.2: An example of AKI label assigning procedure based on urine part of KDIGO
criteria for the first day (Day 0) in the ICU for stages 1 and 2. The urine output rate from
12-18h is less than 0.5, so we assign label 1 to stage 1 (according to KDIGO [22]). By the
end of the day, the rate is still less than 0.5 for at least 12h, so we assign label 1 to stage
2. Stage 3 label is calculated similarly, except that the time window length is 24h instead
of 6h.

and 0 to stages 2 and 3. Otherwise, we assign 0 to all stages (for now).

4. If baseline 2 is available and the difference between it and C1 is more than 0.29, we
assign label 1 to stage 1.

5. If no baseline values are available, we assign 0 to all stages.

Figure 3.1 shows the diagram describing the algorithm for obtaining creatinine-based
labels. This algorithm is a modified version of the one that originated from The National
Health Service (NHC) of England 1.

Similarly, the urine output values were analyzed to calculate labels for AKI stages. The
values of urine output were aggregated to get the sum in milliliters of outputs for each of 6h
time windows, 12h time windows, and 24h time windows. Then, these values were divided
by the patient’s weight in kilograms and the number of hours in a specified time window.
Then, the obtained values of urine output rates were analyzed to assign the labels:

1. if the rate is less than 0.5 ml/kg/h for six hours, stage 1 was assigned label 1, otherwise
label 0;

2. if the rate is less than 0.5 ml/kg/h for 12 hours, stage 2 was assigned label 1, otherwise
label 0;

3. if the rate is less than 0.3 ml/kg/h for 24h, stage 3 was assigned label 1;

4. if there are no urine output values recorded for a given day, assign label 0 to all
stages.

An example of the above-mentioned process is shown in Figure 3.2.

The final labels for each day in the ICU unit were calculated by combining both: labels
obtained using creatinine criteria and urine output criteria. If any criteria were satisfied
for any stage, we would consider it as the AKI onset of the given stage.

1https://www.england.nhs.uk/akiprogramme/aki-algorithm/
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Figure 3.3: The box-plot diagram for patients’ weight distribution by AKI stage.

Subtasks formulation. Finally, three sets of labels were constructed: 1) any patient
satisfying stage 1 of AKI according to KDIGO [22] during the second day in the ICU was
assigned label 1, otherwise, they were assigned label 0; 2) any patient satisfying stage 2
of AKI during the second day in the ICU was assigned label 1, otherwise label 0; 3) any
patient satisfying stage 3 of AKI during the second day in the ICU were assigned label
1, otherwise label 0. It is worth noting that the higher stage’s satisfaction implies the
lower stages. Therefore, the first set of labels could also be defined as ’any stage’ of AKI,
the second set of labels could be seen as stages 2 and 3 of AKI, while the third set of
labels represent the patients having the stage 3 of AKI. We consider all three sets of labels
as different subtasks of the AKI prediction task. Each has different granularity and was
evaluated separately later in the results section.

3.1.3 Cohort analysis

The MIMIC-IV version 2.0 dataset contains information on 53, 569 patients with 76, 943
ICU stays. Most of the patients stay in ICU for one to four days. Figure 3.5a shows
the distribution of patients’ length of stay. Daily AKI status calculated via the algorithm
mentioned above is available for 33, 806 ICU stays. Figure 3.4 shows the number of patients
having AKI at each stage during the ICU stay. Most of the AKI onsets occurred during
the ICU’s first three days. The peak is in the first 24h, indicating that kidney failure was
the reason for these patients’ transfer to the ICU. From the creatinine level during the first
24h in the ICU (Figure 3.5b), we can notice many patients having creatinine higher than
1.2 mg/dL, while the normal creatinine level for adult women is 0.59 to 1.04 mg/dL, and
for adult men is 0.74 to 1.35 mg/dL 2. The most common stage of AKI in the cohort is 1.

In the final cohort (after filtering out samples according to all exclusion criteria), the

2https://www.mayoclinic.org/tests-procedures/creatinine-test/about/pac-20384646
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Figure 3.4: Number of patients having AKI onset on each day during the ICU stay.

Statistic LSTM-based XGB
n of samples - total 14,282 13,128
n of samples - train 11,425 10,487
n of samples - test 1,428 1,328
n of samples - val 1,429 1,313

Stage 1 AKI 0.09 0.11
Stage 2 AKI 0.03 0.04
Stage 3 AKI 0.01 0.01

Women 0.46 0.45
White race 0.63 0.64

Black/African american 0.14 0.06
Other ethnicity 0.23 0.3

Age - Q2 (median) 52 65
Age - Q3 70 77

Table 3.1: Final cohort statistics description for LSTM-based and XGBoost models.

ratio of female patients to male patients is around 4 : 5. The median age is 65, the youngest
patient is 18 years old, and the oldest patient is 100 years old. The most common race
among all patients in the final cohort is white, followed by unknown (or other, unable
to obtain), and African American. The data preprocessing step for the XGBoost model
differs from the one for the LSTM model. Due to that, some samples were excluded from
the dataset before being fed to the XGBoost model. Table3.1 shows the difference between
the total number of samples and the description of the final cohort for both models.

The distribution of patients’ weight is shown on figure 3.3. We can observe that the
second quartile (i.e., median) is slightly higher for higher stages of AKI, e.g., for patients
who did not develop an AKI onset, the median weight is 160 kg, for those who developed
stage 1 of AKI it is 168 kg. In contrast, for those who developed stage 3 of AKI, the
median weight is 172 kg. The first quartile follows a similar pattern.
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(a) Distribution of patients having different lengths of stay in ICU.

(b) Distribution of patients having different creatinine levels on the first 24h in the ICU.

Figure 3.5: Distribution of patients having different lengths of ICU stay (a) and different
creatinine levels on the first 24h in the ICU (b).

3.1.4 Exclusion criteria

In our problem setting, a sample is the records of a single ICU stay of a patient. In other
words, we can have several samples corresponding to the same patient. Moreover, one
patient can have several hospital admissions, and multiple ICU stays during that admission.
MIMIC IV contains records of 76, 943 unique ICU stays in total, which corresponds to
69, 639 hospital admissions and 53, 569 patients. If a sample falls into one of the following
categories, we exclude it from the cohort:

• less than two creatinine measurements recorded;

• the first creatinine measurement is abnormal;

• length of stay in the ICU is less than two days;

• AKI of stage 2 or 3 occurred during the first 24h in the ICU.

We compared the obtained labels with diagnoses information from MIMIC IV. Since
the diagnoses were entered into the database during patient discharge from the hospital,
we have the diagnoses information for each admission without corresponding timestamps.
Suppose the algorithm described above has detected AKI of any stage for a patient, and
we have any AKI diagnoses (Table 3.2) recorded on the discharge for this patient. In
that case, we mark this sample as True Positive (TP). Otherwise, we mark this sample
as False Positive (FP). On the other hand, we marked as True Negative (TN) a sample
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ICD version ICD code Diagnosis
9 5845 Acute kidney failure with lesion of tubular necrosis

9 5846
Acute kidney failure with lesion of renal

cortical necrosis

9 5847
Acute kidney failure with lesion of renal

medullary (papillary) necrosis

9 5848
Acute kidney failure with other specified

pathological lesion in kidney
9 5849 Acute kidney failure, unspecified
10 N17 Acute kidney failure
10 N170 Acute kidney failure with tubular necrosis
10 N171 Acute kidney failure with acute cortical necrosis
10 N172 Acute kidney failure with medullary necrosis
10 N178 Other acute kidney failure
10 N179 Acute kidney failure, unspecified
10 N990 Postprocedural (acute) (chronic) kidney failure
10 O904 Postpartum acute kidney failure

Table 3.2: Diagnoses and corresponding ICD codes used to compare labels obtained using
KDIGO criteria [22] and diagnoses records from MIMIC IV[21].

Figure 3.6: Confusion matrix describing the relationships between labels assigned by the
AKI detecting algorithm and diagnoses records from MIMIC IV. (Notice that samples with
AKI of stage 2 or 3 occurred during the first 24h in the ICU are not excluded on this
diagram.)

corresponding to a patient without AKI detected by the algorithm and no AKI diagnoses
found in the records. If there are any AKI diagnoses in the records, we mark this sample
as False Negative (FN). Figure 3.6 shows the number of samples in each category.

The number of FP labels is relatively high, indicating many AKI cases have not been
properly documented and entered in the table. However, we exclude the ambiguous cases
(FP and FN) from the cohort to avoid potential noise.
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Figure 3.7: example of the input data passed to the model.

3.1.5 Predictor variables and input data

For such a fine-grained problem as predicting an AKI onset and its stage on a particular
day of the ICU stay, it is crucial to use granular data. The input data is divided into
two categories: static and continuous. The static data includes information that is not
changing during the patient’s stay, namely, demographics, diagnoses from previous patient
admissions, and body measurements made before the transfer to ICU. On the other hand,
the continuous data is changing with every new sample, particularly laboratory test results,
vital signs, and volume of urine output. For the continuous values, we used maximum
values during 24h period (for laboratory test results), minimum and maximum values for
12h period (vitals), and the total volume of urine output for 12h period. We also define
taken medications as a continuous variable since they can change every time. Figure 3.7
shows the example of data blocks passed to the model. The paragraphs below describe
each of the blocks.

Demographics and body measurements The demographics block consists of age,
gender and race information. Besides, we added other semi-static body measurements
recorded by the Online Medical Record system before the ICU stay, such as body mass
index (BMI), weight, heights, blood pressure. If there are available records in the last 365
days, we take the latest ones. Otherwise, we do not use this information because these
parameters could change drastically from when they were recorded and potentially infuse
unwanted noise.

Previous diagnoses In this block, we included all diseases diagnosed in the patient for
all time, except the current admission. There are 13, 800 unique diagnoses ICD codes that
were used as input data for the model. Each code was converted into a textual format and
concatenated to the ’d’ letter.

Laboratory tests This block contains all laboratory test results made during the ob-
servation window of the ICU stay for each 24h period. If more than one test was made, we
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used the maximum value. Every laboratory test was encoded using the MIMIC IV orig-
inal itemid number and concatenated to the ’l’ letter. For example, Potassium (serum)
encoded as l227442. Each code is followed by a number, representing the test results and
converted to a textual format. The results of the following laboratory tests related to
AKI (according to Chen et al. [8]) were used as predictor variables: anion gap, albu-
min, bands, bilirubin, hematocrit, lactate, sodium, bicarbonate, blood urea nitrogen (BUN),
calcium, chloride, creatinine, hemoglobin, international normalized ratio (INR), platelet,
potassium, prothrombin time (PT), partial thromboplastin time (PPT), white blood cell
count (WBC), and glucose.

Vital signs, outputs, and medications The current block contains vital signs, urine
outputs, and given medications for each 12h period during the observation time. Simi-
larly to laboratory test results, each type of measurement was assigned a unique code,
corresponding to its itemid in MIMIC IV, and concatenated with the letters v, o, m for
vital sign, urine output, and medication correspondingly. Since vital signs information is
collected with the help of Metavision bedside monitors, many measurements are recorded
for each day. Therefore, only maximum and minimum values for each 12h period were
used in the model. The urine output value is collected approximately every two hours, so
the sum of the urine output is calculated for 12h (in milliliters). Urine output coming from
different sources (e.g., foley or condom catheter) have different itemid and, consequently,
different codes. For medications, we used corresponding itemid to code each medication
given during 12h period.

3.2 Prediction model

3.2.1 LSTM structure

Long Short-Time Memory is one of the types of RNN which alleviates the typical for RNNs
problem of vanishing (exploding) gradients. It was introduced in 1997 by Hochreiter, and
Schmidhuber [18]. This model allows using long-term dependencies of the input data with
the help of three gate layers. Figure 3.8 shows the structure of the single LSTM cell, and
the equations below show the calculation process inside this cell, where ft, ut, and ot are
forget, update and output gate layers correspondingly.

Forget gate (eq. 3.1) helps the model to decide how much information to keep from the
previous time step. It is calculated by first multiplying the xt (input) and ht−1 (the cell
state from the previous time step) by weight matrices of input Uf and Wf , then summing
up the multiplication results and adding the bias bf . Then, the sigmoid function σ is
applied to get a value ranging from 0 to 1. The closer the result to 0, the more information
will be forgotten, while closeness to 1 means keeping most of the information.

Update gate (eq. 3.2) is responsible for deciding which information from the input
should be stored in the current cell state. Similarly to the forget gate, it is calculated by
summing up the bias bu, the product of input xt and weight matrix Uu, the product of
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Figure 3.8: The structure of a single LSTM cell.

the hidden state from the previous time step ht−1 and weight matrix Wu. Similarly, the
sigmoid function is applied to the result. In addition, the vector with candidate values Nt

is calculated using the tanh function and weight matrices Un and Wn, as well as the bias
bn (eq. 3.4). Since the tanh function outputs the values from −1 to 1 it allows to add or
subtract the candidate values.

Then, the previous cell state (eq. 3.5) ct−1 is updated to the new cell state ct by
adding the Hadamard product (element-wise multiplication) of ct−1 and ft to the Hadamard
product of ut and Nt.

Output gate (eq. 3.3) decides what information from the cell state the model will
output as the new hidden state. The output gate ot is calculated similarly to ft and ut,
but using the weight matrices Ut and Wt, as well as the bias bo. Then, the hidden state
(eq. 3.6) ht is calculated by applying the tanh function over the new cell state ct and
multiplying element-wise the ot with the result.

In addition to the new input, the new cell state and hidden state are passed as the
input to the next cell of the LSTM model.

ft = σ(xtUf + ht−1Wf + bf ) (3.1)

ut = σ(xtUu + ht−1Wu + bu) (3.2)

ot = σ(xtUo + ht−1Wo + bo)) (3.3)

Nt = tanh(xtUn + ht−1Wn + bn) (3.4)
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Ct = ft ∗ Ct−1 + ut ∗Nt (3.5)

ht = ot ∗ tanh(Ct) (3.6)

3.2.2 Architecture of the proposed model

The model is based on the LSTM neural network since it allows to capture long term
dependencies in the input data. Due to its hight length, the input data, described in
section 3.1.5 are combined into four blocks:

• demographics (which includes both: demographic information and semi-static body
measurements);

• previous diagnoses;

• laboratory test results taken during the first 24h in the ICU;

• vital signs, urine output volume recorded during two 12h windows and medications
prescribed during the same two 12h windows from the time of transferring to the
ICU.

Every number in the text was enclosed in brackets in order to pass the sense of the start
and the end of the numerical information to the model. Each of these blocks is converted
into a tensor and then tokenized using Byte-Pair Encoding (BPE) technique. For each of
the tensors, we define the maximum length in tokens. Thus, if an input text is tokenized
into more tokens than the maximum length, we truncate it. On the other hand, if the
text input has fewer tokens than the maximum length, we pad the sequence with special
token ’PAD’. Each tokenized block has a special token at the beginning and end of the
text (before the padding tokens).

Then, we concatenated the static information blocks - demographics and previous di-
agnoses. Each resulting tokenized vector is passed to an embedding layer to get the rep-
resentations of the input text. The representations of the static information are passed to
a fully-connected layer, while the representations of the continuous information are passed
to the LSTM layer. After that, the outputs of both layers are concatenated and passed
to the other fully-connected layer. Then the output is passed to the bidirectional LSTM
layer. Finally, the dropout is applied to the output from the LSTM layer, and then the
resulting tensor is passed through another fully-connected layer with three output nodes.

Then, the sigmoid activation function is applied to the model’s output. Here we defined
the problem of predicting the AKI and its stage as the multi-label classification.
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Figure 3.9: The architecture of the proposed model.

3.2.3 XGBoost AKI prediction model

Extreme Gradient Boosting or XGBoost [7] is a machine learning technique based on
gradient boosting decision trees (GBDT). The gradient boosting is an ensemble of shallow
decision trees where the error residuals from the previous trees are used to train the next
set of models. The training process is wrapped into the gradient descent algorithm over
an objective function.

Before feeding data into the XGBoost model, it needed to be preprocessed in a certain
way. The demographic information consisted of BMI, height, weight, diastolic and systolic
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Figure 3.10: The distribution of the sodium in the training cohort before and after the
data normalization using the method described in equations 3.7 and 3.8.

blood pressure (the latest value recorded within 365 days before admission into the ICU),
as well as age, gender, and race. The minimum and maximum vital signs values for 24h
were used: heart rate, blood pressure measurements, and body temperature. Similarly to
vital sights, the minimum and maximum values of laboratory test results were used as the
input features. The sum of urine output for 24h was also the input feature.

Previous diagnoses were coded as 1 if a patient has been diagnosed with the disease
earlier in their life. Otherwise, it was coded as 0. The set of diagnoses was chosen ac-
cording to the analysis of the impact of different features on the risk of AKI conducted
by Chen et al. [8]. We used the following diagnoses: cirrosis, congestive heart failure
(CHF), coronary artery disease (cad), liver disease, myocardial infarction (MI), diabetes,
hypertension, peripheral vascular (PV).

The set of medications was also chosen with the help of the study of Chen et al. [8].
Since the medications in this study are represented as Anatomical Therapeutic Chemical
(ATC) Classification codes, and the medications in MIMIC-IV are represented as National
Drug Code (NDC), we needed to map the ATC codes into the NCD codes. The mapping
was performed using the database from the original US Food and Drug Administration
website 3.

We imputed the missing values of the continuous variables with the average value in
the cohort. After that, the data was normalized using the interquartile method described
in the equations 3.7 and 3.8, where x is the target value, Q1 is the first quartile (a value
higher or equal to 25% of all data points), and Q3 is the third quartile (a value higher or
equal to 75% of all data points).

3https://www.fda.gov/drugs/drug-approvals-and-databases/national-drug-code-directory

29

https://www.fda.gov/drugs/drug-approvals-and-databases/national-drug-code-directory


IQR = Q3−Q1

U = Q3 + 1.5 ∗ IQR

L = Q1− 1.5 ∗ IQR

(3.7)

if x ≥ U, x = U

if x ≤ L, x = L

else x = x

(3.8)

Figure 3.10 shows the distribution of sodium in the training cohort before and after the
data normalization.

The training, testing, and validation data splits were imputed and normalized separately
to prevent information leakage from training data into testing data.
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Chapter 4

Experiments and Results

4.1 XGBoost models

4.1.1 Experimental design

The baseline models were implemented using python XGBoost package 1. All models had
500 estimators and eta of 0.3. Parameters such as ’max depth”, ”min child weight”, ”col-
sample bytree”, and ”subsample” were tuned using grid search and 5-fold cross-validation.
In each experiment, three models were trained with the same data but with different sets
of labels corresponding to each subtask. Therefore, three sets of parameters were found
for each model (Table 4.1).

Subtask #1 Subtask #2 Subtask #3
max depth 3 3 3

min child weight 7 7 9
subsample 1 1 1
colsample 1 1 1

Table 4.1: Parameters found using grid serach and 5-fold cross-validation for each set of
labels.

To tackle the problem of high imbalance in the dataset, we experimented with several
techniques and their combinations: oversampling, undersampling, and weighted XGBoost.
The positive weights for each experiment were calculated using the following formula:
pos weight = n

n pos
, where n is a number of samples in dataset, and n pos is the number

of positive samples.

The sampling strategy was defined as follows: for subtasks #1 and #2, the ratio of
positives to negatives after oversampling is equal to 0.5, and after undersampling, it is
equal to 0.4; and for subtask #3, the ratio of positives to negatives after oversampling

1https://xgboost.ai/
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Figure 4.1: The quantitative description of the training data fed to XGBoost algorithm,
before and after applying sampling techniques.

is equal to 0.2, and after undersampling it is equal to 0.2 as well. Figure 4.1 shows the
oversampling and undersampling strategy used to handle an imbalance in the data.

For the experiments where we combine the weighted XGBoost and oversampling or
undersampling, we first sampled the data and then calculated weights for the given exper-
iment. As a result, the experiments with original and sampled data have different weights.

4.1.2 Results

Since the task of predicting an AKI onset consisted of three separate subtasks with different
sets of labels, the performance is shown for all three subtasks.

Table 4.2 shows F1-score, sensitivity, and precision scores for each of the experiments
described in the Section 4.1.1. The experiments were conducted for each set of labels
separately: for any stage of AKI, stages 2 or 3, and stages 3 of AKI. The sets of labels
correspond to subtasks #1, #2, and #3, respectively. To get the prediction, we compared
the probability value outputted by the model. If the value was higher or equal to the
chosen threshold, the sample was labeled 1, otherwise 0. We defined a set of candidate
thresholds to choose the threshold, then calculated the predictions based on it. Using the
resulting predictions, we computed F1 scores for each of the thresholds from the set. The
results presented in these tables are shown for the threshold, which gives the highest F1
score. Table 4.3 shows other metrics describing the performance of the models in the same
experiments. The primary metrics here are PR AUC and F1-score since the data is highly
imbalanced, and the problem of predicting AKI puts more importance into predicting the
positive class correctly. Another critical metric is 33% precision - sensitivity, which shows
the model’s sensitivity at the minimum acceptable precision threshold. We chose this
precision threshold based on the study of Tomasev et al.[40].
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Subtask #1
Experiment F1-score Sensitivity Precision TP:FP

XGB 0.51 0.55 0.48 1.1
Weighted XGB 0.49 0.71 0.37 1.7

XGB & oversampling 0.53 0.59 0.48 1.1
XGB & undersampling 0.48 0.71 0.37 1.8

Weighted XGB & oversampling 0.55 0.54 0.57 0.8
Weighted XGB & undersampling 0.54 0.69 0.44 1.3

Subtask #2
XGB 0.34 0.5 0.25 3

Weighted XGB 0.28 0.7 0.18 4.7
XGB & oversampling 0.3 0.79 0.19 4.4
XGB & undersampling 0.37 0.59 0.27 2.8

Weighted XGB & oversampling 0.35 0.52 0.27 2.8
Weighted XGB & undersampling 0.4 0.46 0.35 1.9

Subtask #3
XGB 0.21 0.2 0.23 3.4

Weighted XGB 0.12 0.13 0.12 7.5
XGB & oversampling 0.21 0.2 0.23 3.4
XGB & undersampling 0.18 0.06 0.11 8.3

Weighted XGB & oversampling 0.2 0.33 0.15 5.8
Weighted XGB & undersampling 0.19 0.53 0.12 7.5

Table 4.2: Results for experiments with XGBoost (XGB) model and different balancing
techniques for predicting if a patient will develop AKI during the second day in the ICU.
The last column corresponds to the amount of false positive predictions for each true
positive.

From the results corresponding to subtask #1, we can see that the weighted XGBoost
model combined with undersampling and the weighted XGBoost model combined with
oversampling techniques achieved better F1-scores (0.55 and 0.54) compared to other ex-
periments (table 4.2). However, the sensitivity of weighted XGBoost with undersampling
is much higher than in weighted XGBoost with oversampling. Moreover, when we consider
33% precision as a threshold to increase the sensitivity of the model while keeping the pre-
cision on the minimum reasonable level, weighted XGBoost with undersampling achieves
the performance of 0.79 (table 4.3). This means that this model is capable of detecting
more patients at risk of developing AKI. From figure 4.2a, we can observe that this model
focused on the following features the most: creatinine, INR, hemoglobin, BUN, diuretics
drugs (C03), and patients’ weight.

Regarding subtask #2, we can observe that the weighted model with undersampling
achieved the best F1-score (0.4) among all other experiments, while the sensitivity of this
model is the lowest. The second best model in terms of F1-score in the current subtask is
XGBoost with undersampling. However, the precision of this model is much lower. These
two models also achieved the highest sensitivity given the 33% precision threshold, while
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Subtask #1

Experiment PR AUC ROC AUC
33% Precision
Sensitivity

XGB 0.53 0.74 0.74
Weighted XGB 0.54 0.78 0.75

XGB & oversampling 0.54 0.75 0.77
XGB & undersampling 0.49 0.78 0.73

Weighted XGB & oversampling 0.56 0.74 0.75
Weighted XGB & undersampling 0.51 0.79 0.79

Subtask #2
XGB 0.27 0.72 0.16

Weighted XGB 0.18 0.78 0.07
XGB & oversampling 0.21 0.82 0.09
XGB & undersampling 0.25 0.76 0.39

Weighted XGB & oversampling 0.24 0.73 0.16
Weighted XGB & undersampling 0.33 0.71 0.46

Subtask #3
XGB 0.07 0.6 0.07

Weighted XGB 0.07 0.56 -
XGB & oversampling 0.07 0.6 0.07
XGB & undersampling 0.08 0.77 -

Weighted XGB & oversampling 0.08 0.66 -
Weighted XGB & undersampling 0.08 0.74 0.07

Table 4.3: Additional results of experiments with XGBoost (XGB). The metrics go as
follows: precision-recall area under the curve (PR AUC), receiver operating characteristic
curve (ROC AUC), and the value for sensitivity when the threshold is chosen for the
precision to be equal to 33%.

other models failed to provide a reasonable level of sensitivity at this threshold. This
model puts more weight on the following features: prothrombin time, calcium, diuretics
drugs, patients’ weight, and creatinine 4.2b. The model with oversampling yielded the best
sensitivity (0.79). However, the precision score is very low in this experiment, indicating
the poor ability of the model to discriminate between positive and negative classes and
tends to assign positive labels to negative examples.

In subtask #3, the original XGBoost model alone and combined with oversampling
technique achieved better F1 scores than other experiments. Nevertheless, the sensitivity
in both experiments is very low and does not provide the required efficiency. In this
subtask, none of the balancing techniques improved the actual performance of the model
summarized in the F1-score metric and 33% precision - sensitivity, neither class weights
nor sampling techniques. However, we can see that the features’ importance in this model
is distributed differently from the models in the other two subtasks. The most important
features are race, weight, diuretics, the presence of cirrhosis diagnosis in a patient’s history,
and PTT 4.2c.
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(a) Subtask #1 (b) Subtask #2 (c) Subtask #3

Figure 4.2: Top features contributed to the decision of weighted XGBoost model with an
undersampled dataset for each subtask.

4.2 LSTM-based model

4.2.1 Experimental design

The model was implemented using the Pytorch library [31]. The Adam optimization
algorithm [24] was used during the training process. The loss function was the Binary
Cross Entropy, shown in the equation 4.1, where n ∈ {0, . . . , N} and N is the number of
training samples in a batch. The learning rate was set to 0.00001, and the vocabulary size
was 8791. The hidden size for LSTM layers was 128. All results are reported as an average
and standard deviation of the performance for three identical experiments.

ln = −wn[yn log xn + (1− yn) log(1− xn)]

L(x, y) = mean({l1, . . . , ln})
(4.1)

The model was fed data blocks described in the section 3.1.5 containing the information
of a patient recorded during the first 24h in the ICU ward, i.e., the observation period is
equal to 24h. The model target is to predict if a patient will develop AKI of a given stage
during the next 24h after the observation period, i.e., the prediction period is equal to 24h.
Figure 4.3 shows the described settings.

Each data block was coded into a set of unique token identifiers using Byte-Pair encod-
ing tokenization technique (BPE) implemented with the help of the hugging face library 2.
The output vector of the model was activated using the sigmoid function 4.2.

S(x) =
1

1 + e−x
(4.2)

After applying the activation function, the threshold was chosen using the same method
as in the baseline experiments with XGBoost (Section 4.1.2), and the predictions were made
based on this threshold.

2https://huggingface.co/
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Figure 4.3: The experimental design for defining the observation and prediction periods.
The medical records from the first 24h in the ICU are used as input for the models. The
second 24h are used to define the labels: if a patient developed AKI onset of target stage
during this period - it assigned label 1, otherwise 0.

4.2.2 Results

The results in tables 4.4 and 4.5 show that within the scope of the subtask #1, the model
can learn some useful dependencies between the data. The best F1-score of 0.39 was
achieved by the model with a dropout probability of 0.6 and an embedding size of 150.
The same model also achieved the best specificity, meaning that it can detect the negative
samples more often and the best precision, which implies that the classification of positive
samples is more accurate than in other experiments. The latter can also be seen from the
true positive ratio in the table 4.5 - the same model had the lowest false positive predictions
for each true positive. The other model with the same embedding size but a lower dropout
of 0.4 achieved the best sensitivity and the second-best F1 score. Overall, the models with
smaller embedding sizes achieved better PR AUC and sensitivity with a precision threshold
of 33%. Note that here the precision threshold is described, not the probability threshold.

For the subtask #2 experiments, we can see that the models still learned some valuable
dependencies. The models with an embedding size of 200 and dropout probability of 0.6,
and vice versa, yielded better F1-score than models with other settings. However, table
4.5 shows that no models could pass the given precision threshold of 33% and achieve any
reasonable sensitivity score.

Similarly, the models trained using the labels for stage 3 of AKI within the scope of the
subtask #3 also could not pass the given threshold. In this setting, all models failed to learn
useful information to make reasonable predictions, which can be seen from the low values
of the F1-score and PR AUC. Even though the values of ROC AUC are relatively high,
since the dataset is highly imbalanced, it does not show the model’s actual performance.

Model interpretation

Since the proposed model is based on LSTM neural network, which is hard to interpret,
the Local Interpretable Model-agnostic Explanations (LIME) [36] algorithm was used to
visualize the model’s explanations. LIME interprets the features used by the model to make
predictions by local linear approximation. The algorithm implemented by lime library3 was

3https://github.com/marcotcr/lime
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Subtask #1
Exp. Dropout Emb. size F1-score Sensitivity Precision TP:FP
1 0.1 200 0.36±0.01 0.61±0.06 0.26±0.02 2.9
2 0.1 150 0.37±0.01 0.64±0.05 0.26±0.02 2.9
3 0.2 200 0.37±0.01 0.58±0.09 0.27±0.03 2.7
4 0.2 150 0.37±0.01 0.54±0.06 0.28±0.02 2.6
5 0.4 200 0.33±0.02 0.51±0.08 0.24±0.03 3.2
6 0.4 150 0.37±0.01 0.61±0.05 0.27±0.01 2.8
7 0.6 200 0.36±0.04 0.53±0.02 0.27±0.04 2.8
8 0.6 150 0.39±0.01 0.57±0.05 0.29±0.01 2.5

Subtask #2
Exp. Dropout Emb. size F1-score Sensitivity Precision TP:FP
1 0.1 200 0.19±0.02 0.36±0.06 0.13±0.01 6.8
2 0.1 150 0.19±0.01 0.44±0.04 0.12±0.01 7.0
3 0.2 200 0.22±0.02 0.38±0.02 0.15±0.02 5.6
4 0.2 150 0.18±0.01 0.37±0.08 0.13±0.01 7.0
5 0.4 200 0.14±0.01 0.46±0.12 0.09±0.02 10.8
6 0.4 150 0.18±0.01 0.4±0.14 0.12±0.01 7.6
7 0.6 200 0.18±0.03 0.42±0.12 0.12±0.03 7.93
8 0.6 150 0.17±0.01 0.46±0.04 0.11±0.01 8.4

Subtask #3
Exp. Dropout Emb. size F1-score Sensitivity Precision TP:FP
1 0.1 200 0.05±0.01 0.52±0.32 0.03±0.01 40.0
2 0.1 150 0.05±0.03 0.33±0.35 0.03±0.02 38.3
3 0.2 200 0.02±0.02 0.27±0.4 0.02±0.02 49.0
4 0.2 150 0.02±0.02 0.3±0.45 0.01±0.01 37.5
5 0.4 200 0.01±0.01 0.73±0.28 0.0±0.01 169.67
6 0.4 150 0.03±0.01 0.64±0.26 0.02±0.01 90.9
7 0.6 200 0.02±0.02 0.49±0.37 0.02±0.02 126.67
8 0.6 150 0.02±0.0 0.76±0.19 0.01±0.0 117.23

Table 4.4: Results for experiments with different dropout probabilities and embedding size
of LSTM-based model for predicting if a patient will develop AKI during the second day
in the ICU. The last column corresponds to the amount of false positive predictions for
each true positive.

used in this work.

Figure 4.4 shows the explanations of the model from experiment 2 for testing sam-
ples of subtask #1. In both examples, the model paid much attention to zeroes without
their context as the predictors of a negative outcome (NO AKI), which is incorrect. This
probably contributed to the final prediction made by the model. However, figure 4.4a the
model correctly recognized the presence of diagnoses 5920 - calculus of kidney (i.e., kidney
stones, or nephrolithiasis) and 25053 - the type of diabetes as a predictor of a positive
outcome (AKI). The multiple studies showed that these commodities are associated with
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Subtask #1

Exp. Dropout Emb. size PR AUC ROC AUC
33% Precision
Sensitivity

1 0.1 200 0.3±0.01 0.71±0.01 0.38±0.03
2 0.1 150 0.3±0.01 0.72±0.01 0.37±0.03
3 0.2 200 0.3±0.01 0.71±0.02 0.38±0.04
4 0.2 150 0.31±0.02 0.7±0.01 0.38±0.02
5 0.4 200 0.23±0.03 0.67±0.02 0.11±0.17
6 0.4 150 0.3±0.01 0.71±0.01 0.43±0.01
7 0.6 200 0.27±0.04 0.69±0.03 0.33±0.08
8 0.6 150 0.3±0.01 0.71±0.02 0.38±0.11

Subtask #2

Exp. Dropout Emb. size PR AUC ROC AUC
33% Precision
Sensitivity

1 0.1 200 0.09±0.01 0.64±0.03 -
2 0.1 150 0.09±0.01 0.67±0.01 0.02±0.0
3 0.2 200 0.09±0.01 0.65±0.01 -
4 0.2 150 0.09±0.01 0.64±0.03 -
5 0.4 200 0.07±0.01 0.64±0.03 -
6 0.4 150 0.09±0.01 0.65±0.04 -
7 0.6 200 0.08±0.01 0.65±0.03 -
8 0.6 150 0.10±0.01 0.67±0.04 0.07±0.0

Subtask #3

Exp. Dropout Emb. size PR AUC ROC AUC
33% Precision
Sensitivity

1 0.1 200 0.02±0.01 0.67±0.1 -
2 0.1 150 0.02±0.0 0.58±0.06 -
3 0.2 200 0.02±0.0 0.53±0.11 -
4 0.2 150 0.02±0.01 0.59±0.14 -
5 0.4 200 0.0±0.01 0.42±0.08 -
6 0.4 150 0.02±0.01 0.57±0.09 -
7 0.6 200 0.01±0.01 0.44±0.11 -
8 0.6 150 0.01±0.0 0.53±0.04 -

Table 4.5: Other metrics describing the results of experiments with LSTM-based model
for predicting if a patient will develop AKI during the second day in the ICU. The first
two columns describe the dropout probabilities and embedding size of the model.

the increased risk of developing AKI [16][32][39].

The model also identified the hemoglobin laboratory test result coded as l220228 as
meaningful for predicting AKI. The study of Seung Seok Han [17] showed that the patients
with anemia (the hemoglobin is < 10.5 g/dL) are at a higher risk of AKI compared to ones
with normal hemoglobin level (≥ 10.5 g/dL). The explanation of the true negative example
indicates that the model used the normal hemoglobin level (12.7 g/dL) as a negative
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(a) True negative example

(b) True positive example

Figure 4.4: Local interpretations of true negative (a) and true positive (b) examples from
the testing dataset for LSTM-based model in experiment 2.

predictor of AKI. In contrast, the explanation of the true positive example suggests that
the patient with anemia (hemoglobin is 8.7 g/dL) is at a higher risk of developing AKI.
Figure 4.4b also shows that the model used the maximum heart rate of a patient (code
v220045 ) as a contributor to the risk of developing AKI.
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Chapter 5

Discussion

This work aims to tackle the following research objectives: 1) developing a labeling algo-
rithm for AKI predicting task; 2) developing a machine learning framework to predict AKI
on the second day of ICU stay; 3) exploring and evaluating different approaches to alle-
viate the problem of high imbalance in the data; and 4) exploring the use of LSTM-based
approach to a problem of a daily AKI prediction. In each experiment, we predicted the
AKI outcome on the second day in the ICU from the medical records made on the first
day. Each experiment was evaluated according to three subtasks: 1) predicting any stage
AKI onset; 2) predicting the AKI onset of stage 2 or 3; 3) predicting the stage 3 AKI
onset. In the first two subtasks, the results of the experiments suggest that utilizing the
undersampling technique is more efficient in enhancing the model performance in the data
imbalance settings. It is consistent with the study of Yuan Wang et al. [42], where they
showed that the undersampling technique helps to tackle the imbalance problem better,
compared to oversampling. The XGBoost with undersampling dataset and weights showed
reasonable performance comparable to other studies in the field [40][42] in the first subtask.
The experiments in the third subtask did not yield clinically applicable performance. In
general, the XGBoost model had better performance than the LSTM-based model.

The labeling algorithm. The labeling algorithm proposed in this work was able to
obtain the labels for each day of the patient’s ICU stay using the creatinine laboratory
test results and urine output records. However, the algorithm labeled as having AKI some
samples corresponding to patients who were not diagnosed with AKI during the given
admission 3.6. It was confirmed by the practicing nephrologist that the satisfaction of the
AKI criteria is the only correct way to diagnose AKI. Therefore, the ’false positive’ labels
may be caused by the fact that clinicians did not document the AKI case on the discharge.
The other possible reason may be the absence of some urine output records. For example,
if a patient had a normal urine output rate that does not satisfy any AKI stage criteria, but
some amount of the urine output was not recorded, it may lead the algorithm to assign
the positive label based on the urine output part of the KDIGO[22] criteria. Similarly,
for the negative labels, assigned to patients who had any of the AKI diagnoses 3.2 in
the discharge summary. The negative label indicates that there were no abnormalities in
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creatinine satisfying the AKI criteria. However, the corresponding laboratory test result
may not be recorded in the system, which leads the algorithm to a wrong decision. Another
possible reason of the inconsistency is a baseline creatinine definition. Suppose a patient
did not have any previous records before ICU admission and was not excluded from the
cohort based on abnormal creatinine from the first laboratory test. Due to the absence
of the baseline, the algorithm may assign the negative label, even though this patient
developed AKI. Similarly, if a patient underwent the last laboratory test for creatinine
earlier than seven days from the given day, the median value of all previous creatinine
measurements for the previous year is taken as a baseline, which may be misleading and
not represent the actual patient’s creatinine baseline.

XGBoost model and data balancing. In the experiments corresponding to subtask
#1, the undersampling technique combined with the weighted model yielded the best
results in detecting correctly maximum patients at risk of AKI with the given acceptable
precision threshold. Therefore, if we aim to find as many patients at risk as possible,
accepting the precision of 33% tradeoff - this model can be the most effective.

When it comes to subtask #2 (the model trained on a set of labels corresponding to
stages 2 and 3), the performance of the model drops. The most likely reason behind that
is the decreased ratio of positive samples in the data (from 0.13 to 0.05, see figure 4.1).
Since the precision of the models in these settings is relatively low, it is reasonable to use
33%-precision sensitivity as the primary metric. In this setting, weighted XGBoost with
undersampling achieved better performance, which corresponds with the results of subtask
#1.

In subtask #3, since the ratio of positive samples in the data is very low for stage 3
of the AKI prediction task (0.008, see figure 4.1), all models failed to label the samples
correctly in the majority of the cases. Thus, the balancing techniques did not improve the
performance on the target metrics. In addition, the set of unique samples was the same in
all three subtasks. Only the labels were changed depending on the subtask. The samples
with the lower stage of AKI are considered negative in the current subtask, e.g., the sample
corresponding to a patient having AKI of stage 2 onset will be treated as negative in the
third subtask. It suggests that the model was encountering noisy labels if the difference
between AKI stages is not significant in terms of produced medical records by a patient.

The models in subtasks #1 and #2 are paying more attention to the laboratory test
results such as creatinine, INR, hemoglobin, and BUN, as well as to diuretics medications
and patients’ weight. On the contrary, the importance of analysis shows that the mode
in subtask #3 focuses on race and weight the most and then on diuretics and cirrhosis
diagnosis in the history of a patient. This indicates that patients with higher weight
are prone to having more severe AKI courses than the ones with lower weight, which is
supported by the study on the impact of obesity on the risk of AKI[11]. This is also
supported by the fact that patients’ median weight is higher in the patients who developed
higher stages of AKI (Figure 3.3). The actual importance of race can be skewed because of
the prevalence of ’white’ race in the data. The contribution of diuretics is also consistent
with the study of Kipyo et al.[23].
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Therefore, the XGBoost model in this setting can predict an AKI onset on the second
day in the ICU, using the data from the first day in the ICU. However, the model fails
when it comes to predicting stage 3 of AKI.

LSTL-based approach. For the daily AKI prediction problem wrapped into a text clas-
sification task, the pattern is similar to the XGBoost model. For the subtask of predicting
the first stage of AKI (or any stage of AKI), the model was able to learn some useful
information. However, it fails when the ratio of positive samples decreases. This model
correctly identified the words denoting diabetes and kidney stone disease, as well as the
low level of hemoglobin as the features associated with the higher risk of AKI. On the
other hand, the model defined the normal level of hemoglobin as a predictor of a negative
outcome (NO AKI).

The other interesting finding is that the models with an embedding size of 150 have
better performance across all metrics in the first subtask. It indicates that a lower number
of parameters positively affects the performance since the number of training samples is
low, and it may be overwhelming for the model to learn low-level data features. Possibly,
having more data could cause the opposite effect since, generally, more parameters help
the model learn more high-level features of the sample. The higher dropout rates improved
models’ F1-score and sensitivity in subtask #1, while the lower rates improved the models
on the same metrics in subtask #2.

Contributions and limitations. This work has several main contributions. First, the
extensive evaluation of the baseline method XGBoost and experimenting with different
balancing techniques was performed. Second, the problem of predicting AKI was tackled
with three different granularity levels - any stage of AKI, stages 2 and 3, and stage 3 alone.
Third, the results are reported with maximum transparency using metrics, which would
be helpful to see the big picture of the models’ performance. Forth, the transparency
with the labels assigning process and the exclusion of the labels which are not fully clear,
i.e., the ones which are not supported by the presence or absence of an AKI diagnosis on
the discharge summary of a patient. Finally, the urine KDIGO AKI criteria was used in
addition to creatinine one, which makes the labels more accurate and different from other
studies that used only the latter [40][23][4][9][42].

One of the limitations of this work is the presence of noisy labels in subtasks 2 and
3, which may contribute to the models’ inability to learn enough to make compelling pre-
dictions. Second, the small final cohort dataset and insufficient data for the deep learning
model to learn efficiently. Third, the model was trained and evaluated on patients from
only one medical facility, which may cause poor generalizability. Finally, the deep learning
models were not extensively evaluated, meaning that more parameter tweaks, data prepro-
cess techniques, and different architectures could be explored to assess the LSTM-based
approach’s performance to this task comprehensively.

Future work. From the data perspective, a possible subject for future research could
be experimenting with all samples for which labels were calculated. The final cohort can
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be enriched by adding the samples with false positive and false negative labels (the ones
defined as positive by the algorithm but did not have AKI diagnoses in the discharge records
and vice versa). Since the false positive labels amounted to around 8k samples, it could
significantly balance the data. Another direction for future work is to define the labels
as separate, not overlapping groups, i.e., labels for stage 1 are only assigned to patients
who satisfy the criteria for the 1 stage and do not satisfy the criteria for stage 2, and so
on. This approach would reduce the amount of noise in the labels. However, it would
reduce the number of samples for each subtask as well. Finally, more experiments could be
done with different observation and prediction windows, for example, exploring the model’s
performance using information from the first two days in ICU to predict the next two days’
AKI outcome. According to Chen et al.[8], expanding the observation window to 48 hours
have a positive effect on the model’s performance.

From the architecture perspective, since the LSTM-based model gets a variety of in-
formation represented as raw text, the attention mechanism could be integrated into the
LSTM model to improve its ability to focus on the relevant information. Another sugges-
tion is to experiment separately with only dynamic information (such as laboratory test
results, vital signs, and medications) and explore the effect of static information (such as
age, race, and previous diagnoses) on the model’s performance.
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Chapter 6

Conclusion

Predicting Acute Kidney Injury is a crucial yet challenging task. A number of studies
explored different aspects of it: predicting an AKI onset in a long-term[1], as well as a
short term perspectives [42][40]; assessing the risk of the death in AKI patients [28]; AKI
stage prediction [8], and etc. In this thesis, we approach this problem by predicting the next
day’s AKI onset from the data recorded during the first day in the ICU. Three subtasks
corresponding to different granularity levels of the predictions were studied and evaluated.
Since the dataset does not contain the labels for a given task, the AKI detection algorithm
was developed and used to obtain the labels for supervised models’ learning. Due to the
low number of samples and prevalence of negative labels, three balancing techniques and
their combinations were used in the experiments.

The weighted XGBoost model combined with the undersampling technique achieved
the best result in predicting the AKI onset of any stage and stages 2 and 3 together on the
next day in the ICU. When it comes to an LSTM-based approach applied to this task, the
performance of the LSTM-based model drops compared to the XGBoost model. However,
the analysis of the LSTM-based model’s explanations showed the ability to focus on the
relevant information for predicting AKI.

The early prediction of AKI could be considerable support for clinicians since this
would enable them to pay more attention to at-risk patients and prevent adverse outcomes.
Currently, most of the AKI predicting approaches represent the EHR data as a vector of
manually selected features, hence relying on the expertise of the designer of an algorithm.
Applying techniques used in NLP to unstructured EHR data could help to use unstructured
medical records with the least manual data manipulations.
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Appendix A

Python Implementation

A.1 Metrics

True Positive Rate = Recall = Sensitivity =
TP

TP+ FN

Precision =
TP

TP + FP

False Positive Rate =
FP

FP+ TN

F1-score =
precision · recall
precision+ recall

PR AUC = auc(Recall, Precision)

ROC AUC = auc(False Positive Rate, True Positive Rate)

where auc(X, Y) is a function calculating area under the curve obtained by plotting X
on x -axis and Y in y-axis.

33% Precision Sensitivity is sensitivity obtained by setting the operating threshold to
the value corresponding to the Precision of 33%.

A.2 Libraries

• torch==1.11.0

• xgboost==1.5.2
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• matplotlib==3.5.1

• seaborn==0.11.2

• numpy==1.21.6

• pandas==1.3.5

• tokenizers==0.12.1

• lime==0.2.0.1

• sklearn==1.0.2

• imblearn==0.9.0

• wandb==0.12.11

• pickle5==0.0.12

• re==2.2.1

• tqdm==4.64.0

• pip==22.1.2

A.3 Code

The code is available and located in the following repository: https://github.com/

maslenkovas/aki_prediction.git
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