

Core Courses Syllabi

CS702 - Data Structures and Algorithms

Title	Data Structures and Algerithms
Titte	Data Structures and Algorithms
Code	CS702
Loading	4 Credit-hours
Prerequisites	Programming skills in any language
Catalog Description	This course provides a comprehensive introduction to fundamental data structures and algorithms which are essential to design an efficient computer program. It includes basic and advanced concepts in data structures such as array-based list, linked lists, hash tables, binary trees. The course will also cover basic and advanced topics in algorithms. The students will learn the relationship between data structures, algorithms and programming, and will be introduced to various performance measures and analysis techniques.
Goal	This elective course aims to familiarize students with various concepts in data structures and algorithms which are essential to design an efficient computer program.
Content	The course covers the basic concepts, algorithms, implementation techniques and application of data structures and algorithms, with major focus on search trees, hash tables, heaps, Fibonacci heaps, union-find in data structure and string matching, sorting and ordering statistics, graph algorithms, network flows, dynamic programming and NP-completeness in algorithms.
Recommended Textbooks	 Kenneth Lambert, Fundamentals of Python: Data Structures, 2nd edition, Cengage learning, 2019. Pat Morin's. Open Data Structures. 2016. Cormen, Leiserson and Rivest. Introduction to Algorithms. Third edition. The MIT Press.
Recommended References & Supplemental Material	Instructors will provide reading material for additional topics covered in the course.

Teaching Week	Topics
1	Introduction to Data Structures and Algorithms Lecture Basic Data Structures and Algorithms Review of essential mathematics Correctness and complexity analysis Lab Practice problems for correctness and complexity analysis
2	Array and String Lecture Array Stack: static and dynamic allocation Fast Array Stack, Array Dqueue, DualArrayDeque, RootishArrayStack Reversing the order of words in a sentence, detecting a palindrome Counting the number of words, number of repeated words within a string String matching Lab Instructor-led demonstration related to the topics taught in the week
3	Linked Lists Lecture • Singly Linked List: insertion, deletion, searching, traversing, reverse traversing • Doubly Linked List: insertion, deletion, reverse traversal • A Space-Efficient Linked List: space requirements, adding, finding and removing elements • Skiplists: basic structure and analysis Lab • Practice problem related to linked lists
4	Binary Search Trees I Lecture Basic operation: searching, adding and removal Recursive algorithms, traversing binary trees Random binary search trees Lab Instructor-led demonstration related to the topics taught in the week

Teaching Week	Topics
5	Einary Search Trees II Lecture • Scapegoat trees with partial rebuilding • Red-black trees: adding, removing, insertion and deletion of leaf • AVL trees: rotation, rebalancing, insertion and deletion Lab • Practice problem related to scapegoat trees, red-black trees, avl trees
6	Heap, stacks and queues Lecture Binary heap and MeldableHeap Ordered and unordered stacks Standard, double and priority queues Lab Instructor-led demonstration related to the topics taught in the week
7	Hash tables Lecture ChainedHashTable LinearHashTable Hash Codes Table doubling, Karp-Rabin Hash Table Collision Resolution Lab Instructor-led demonstration related to the topics taught in the week
8	Sorting and Searching Algorithms Lecture Lower bounds for comparison-based sorting Bubble sort,merge sort, quick sort, shell sort, heap sort, insertion sort (binsort, radix sort) Sequential searching Probability search Lab Instructor-led demonstration related to the topics taught in the week

Teaching Week	Topics
9	Divide-and-Conquer Lecture Fast integer multiplication, recurrences, fast matrix multiplication Naive divide and conquer algorithm Faster divide and conquer algorithm Master theorem, randomized median and selection algorithms Lab Instructor-led demonstration related to the topics taught in the week
10	Craphs I Lecture Graph basics, representing graph, exploring graphs, connectivity Graph Traversal: breadth-first search and depth-first search Biconnectivity in undirected graphs Connected components in directed graphs Topological sorting Lab Instructor-led demonstration related to the topics taught in the week
11	Craphs II Lecture Fastest Route Naive Algorithm Dijkstra's Algorithm: Bellman-Ford Algorithm Minimum Spanning Trees: Kruskal's Algorithm, Prim's Algorithm Lab Instructor-led demonstration related to the topics taught in the week
12	Dynamic Programming Lecture Paradigm of SPs in DAGs Longest increasing subsequence; (approximate) string matching Integer and (0, 1) knapsack problems Chain matrix multiplication Single-pair reliable SPs, all-pairs SPs: independent sets Fibonacci, shortest paths Lab Instructor-led demonstration related to the topics taught in the week

Teaching Week	Topics
13	Network Flows Lecture and Tutorial Maxflow-mincut theorem bipartite matching Menger's theorem and disjoint dipaths Ford-Fulkerson Algorithm Edmonds-Karp Algorithm Global minimum cuts Image Segmentation
14	NP-complete Problems Lecture Brute force search Approximation Algorithms and Fix Parameter Tractability P and NP, Showing NP-completeness Integer Linear Programming Problem Traveling Salesman Problem Lab Instructor-led demonstration related to the topics taught in the week
15	Data structure for Integers Lecture Binary Trie: digital search tree XFast Trie: searching in doubly-logarithmic iime YFast Trie: doubly-logarithmic time SSet Lab Instructor-led demonstration related to the topics taught in the week